Del bosque al laboratorio// From the forest to the Lab

Este video es un apoyo audiovisual al artículo anteriormente escrito acerca de la investigación de escarabajos coprófagos realizada recientemente aquí en UGA Costa Rica. Se documenta el proceso desde el trabajo de campo hasta el resultado final, colección física de referencia de escarabajos coprófagos del área de San Luis. Para leer más acerca de la investigación visite

Estudiando la diversidad de los escarabajos rueda caca en UGACR

 

This video is to support a previously written article about recent dung beetle research done here at UGA Costa Rica. It documents the process from the field work to the final results, a dung beetle physical reference collection of the San Luis area. For more information about the research visit the link below

Studying the dung beetle diversity in UGACR

 

Mariela Vásquez González pasante de fotoperiodismo// photojournalist Intern

Estimulando el pensamiento científico en San Luis // Stimulating scientific thinking in San Luis

Durante el mes de diciembre 2017 y enero del 2018, niños y niñas de la comunidad de San Luis acudieron a los talleres de Biodiversidad que se realizaron en el campus de UGA Costa Rica. Sarah Currier actual naturalista residente  fue quien lideró la actividad como parte de su pasantía. Sarah se graduó de Biología de la Universidad de Westfield State de Massachusetts y desarrolló dos diferentes talleres, uno acerca de insectos y el otro acerca de mamíferos.

During the months of December 2017 and January 2018, children from the San Luis de Monteverde community attended Biodiversity Workshops held at UGA Costa Rica. Current resident naturalist, Sarah Currier, led the activity as part of her internship. Sarah received her B.S. in biology at Westfield State University in Massachusetts, and developed two workshops, one about insects and the other about mammals.

15
Martha Garro (izquierda) y Sarah Currier (derecha) presentándole a los niños y niñas de la comunidad de San Luis el taller de insectos
Martha Garro (left) and Sarah Currier (right) giving the Insect Workshop to boys and girls in the San Luis community

Dentro de los objetivos del primer taller fue importante que los y las participantes pudieran hablar acerca de las partes del cuerpo de los insectos, introducirles los roles e interacciones ecológicas de los mismos en el medio ambiente.

El grupo de los insectos es abundante y diverso, representan el 70% de los animales conocidos en el planeta. Juegan un rol importante en el ecosistema, entre las funciones que realizan se encuentran la polinización, la descomposición de materia orgánica, el reciclaje de nutrientes, como también sirven de alimento para otros organismos.

One of the goals of the first workshop was for students to be able to recognize how insect and human anatomies differ and to be able to define some of the ecological roles that insects play in the environment.

Insects are an abundant and diverse group, representing 70% of the animals on the planet. They play important roles in the ecosystem, performing essential functions such as pollination, decomposition of organic matter and nutrient cycling, as well serving as food for other organisms.

16

10
José Montero recolectando la mariposa de la trampa y mostrándola a los niños y niñas //
Jose Montero collecting a butterfly from a trap and showing it to the children 

Se realizaron diferentes actividades como la creación de un diccionario de naturaleza en el que se practicaron conceptos sobre su anatomía o partes del cuerpo, su recolección a través de diferentes técnicas, su visualización mediante un estereomicroscopio, y se finalizó con un experimento con hormigas.

During the workshop, the students were able to create their own field dictionaries, enabling them to put their knowledge of insect anatomy into practice. They also learned different methods of insect collection, practiced using a stereomicroscope, and ended the workshop with an ant experiment.

 

6

7
Recolectando insectos con diferentes metodologías, en este caso un aspirador de insectos //
Collecting insects using different methods, in this case using an aspirator
13
Opsiphanes tamarindi, larva de mariposa diurna capturada durante el taller //
Opsiphanes tamarindi, a butterfly caterpillar captured during the workshop
11
En el laboratorio de UGACR niños y niñas observando insectos vivos y disecados mediante estereomicroscopios //
In the UGACR laboratory the children observing both live and dried insects using a stereomicroscope

Según Sarah “fue importante aclarar diferentes cosas acerca de los insectos porque se tenían ideas que no eran correctas, además se practicaron los términos en inglés y en español.”

According to Sarah “it was important to clarify concepts regarding insects because the children had some ideas about them that were incorrect. They were also able to practice terminology in English and Spanish.”

14
Ejemplo de diccionario de insectos creado por una participante, mostrando los dibujos de una hormiga corta hojas y una larva de Opsiphanes tamarindi // A sample insect dictionary created by one of the students, showing a drawing of a leaf-cutter ant and a caterpillar Opsiphanes tamarindi

El segundo taller realizado en enero del presente año estuvo enfocado en mamíferos. Costa Rica cuenta con un clima tropical que provee un hábitat con gran variedad de plantas, insectos y comida para los mamíferos, cuenta con el 6% de los mamíferos del mundo. UGACR ha realizado diferentes proyectos como estudios de cámara trampa, muestreo y observaciones para entender la diversidad y movimiento de los mamíferos de la zona de San Luis.

Dentro de los objetivos principales del taller se destacó que los y las participantes pudieran hablar acerca de las características principales de los mamíferos, su importancia y su rol en el medio ambiente, así como aprender algunos de los nombres comunes de los mamíferos locales.

The second workshop was held in January of this year and focused on mammals. Costa Rica has a tropical climate that provides habitats with a wide diversity of plants, insects, and food for mammals. A total of 6% of the world´s mammals are found here. UGACR has developed various research projects which implement methods such as camera trapping, sampling, and observation to understand the diversity and movement of mammals in San Luis.

Some of the objectives of the workshop were for participants to learn to identify the primary characteristics of mammals, understand their importance and roles in the ecosystem, and learn the common names of some of the local mammals.

1
Identificando huellas de mamíferos mediante comparación con la literatura disponible // Identifying mammal tracks by comparison with the available literature

Se empezó con una charla de los mamíferos, los roles que juegan en el ecosistema, la importancia de la cadena alimentaria y diferentes métodos para estudiarlos. Una de las actividades fue el identificar huellas, por lo que se les facilitó una guía sobre mamíferos del área de San Luis con el objetivo de ayudar a los niños y niñas a identificar y dibujar las huellas en el campo.

The workshop began with a lecture discussing the roles that mammals play in the ecosystem, their importance in the food web, and the different methods to study them. One of the activities involved learning to identify and draw mammal tracks in the field and the students were given a field guide to the mammals of San Luis for this purpose.

17
Aprendiendo como instalar correctamente una cámara trampa para estudiar mamíferos del sotobosque // Learning to correctly install camera traps to study mammals of the understory
18
Durante la práctica de cámaras trampa, Sarah Currier explicando cómo configurar los parámetros de la cámara, como fecha, hora, tipo y tiempo de grabación // During the camera trapping activity, Sarah Currier explaining how to configure the camera parameters, such as the date, time, and type and length of recording

 

Martha Garro Cruz líder naturalista y facilitadora de programas académicos expresa lo importante que es para ella trabajar con su comunidad, comenta que la mayoría del material facilitado y las actividades realizadas tuvieron el objetivo de dar herramientas para que los niños y niñas “cuando se encuentren en algún espacio, inmersos en el bosque tengan herramientas y puedan identificar un animal, o una huella, que puedan hacerlo solitos, interactuar independientemente”.

Martha Garro Cruz, head naturalist and academic programs facilitator, expressed how important it is for her to work with her community. The objective of the majority of the activities was to give students the tools so that “when they find themselves immersed in the forest they are able to identify an animal or a track on their own, interacting independently.”

4
Algunas huellas de mamíferos encontradas en el sendero durante la práctica en el bosque de UGACR // Some mammal tracks found on the trail during the walk in forest at UGACR
19
Identificación e interpretación de datos obtenidos de las cámaras trampa //
Identifying and interpreting the data obtained from the camera traps

Escrito por Mariela Vásquez González pasante de fotoperiodismo/ photojournalism intern

Revisión científica por José Joaquín Montero Ramírez

 

Estudiando la diversidad de los escarabajos rueda caca en UGACR// Studying the dung beetle diversity in UGACR

Dionné Mejía es bióloga graduada de la Universidad de California, San Diego. Ella ha estudiado los artrópodos (por ejemplo, escorpiones, arañas e insectos), éstos son animales que tienen un esqueleto externo llamado “exoesqueleto”, a diferencia de los mamíferos que tienen un esqueleto interno “endoesqueleto”. Para su tesis de maestría profundizó en la diversidad de los Coleoptera (comúnmente llamados escarabajos), de la familia Staphylinidae en el hábitat de los cactus en estado de descomposición en el desierto de Sonora.

Dionné Mejía is a biologist from University of California, San Diego. She has studied arthropods (for example, scorpions, spiders and insects), which are animals that have an external skeleton called “exoskeleton”, and differ from animals such as humans, which have an internal skeleton “endoskeleton”. For her master’s thesis she delved into the diversity of the order Coleoptera (commonly called beetles) of the Staphylinidae family found in rotting cactus in the Sonoran desert.

1
Dionné activando una trampa para recolectar escarabajos en el área boscosa del Campus de UGACR.//
           Dionné baiting a trap to collect beetles in the forested area of ​​the UGACR Campus.

 

Llegó a UGACR en junio del presente año como naturalista residente. Una de las posibilidades que brinda la pasantía es desarrollar una investigación independiente. Dionné decidió enfocar su investigación en los escarabajos coprófagos en conjunto con el co-investigador José Joaquín Montero.

Los escarabajos coprófagos son coleópteros de la subfamilia Scarabaeinae, dentro de la familia Scarabaeidae, conocidos por ser los “rueda cacas”. Los coprófagos tanto en su etapa de larva como en su etapa adulta se alimentan del excremento de mamíferos. Los adultos utilizan el excremento como una especie de nido, ahí depositan sus huevos y posteriormente sirve como alimento para el desarrollo de las larvas. Su rol en el ecosistema es remover el excremento y reciclar los nutrientes. Al mover los excrementos y hacer túneles ayudan a la dispersión secundaria de las semillas y a la aeración del suelo.

She came to UGACR in June of the present year as a resident naturalist. One of the possibilities offered by the internship is to develop an independent research project. Dionné decided to focus her research on dung beetles in conjunction with co-researcher José Joaquín Montero.

The coprophagous beetles are coleopterans of the subfamily Scarabaeinae, within the family Scarabaeidae, which comprises the “dung beetles”. The coprophagous beetles, both in their larval stage and in their adult stage, feed on mammal excrement. The adults use the excrement as a nest, where they deposit their eggs and later it functions as food for the development of the larvae. Its role in the ecosystem is to remove excrement and recycle nutrients. By moving the excrement and making tunnels, it aids in the secondary dispersion of the seeds and the aeration of the soil.

4
De arriba hacia abajo un individuo de Dichotomius annae, dos individuos de Dichotomius satanas, y dos individuos de Ontherus pseudodidymus.//
From top to bottom one individual of Dichotomius annae, two individuals of Dichotomius satanas, and two individuals of Ontherus pseudodidymus.

Actualmente en Costa Rica existen 28 géneros y 182 especies de Scarabaeinae (coprófagos). El objetivo de este estudio pionero es conocer la diversidad y llevar acabo un inventario de los coprófagos que habitan en UGACR en la zona de San Luis, Monteverde para generar información de línea de base.

Currently in Costa Rica there are 182 species within 28 genera of Scarabaeinae (dung beetles). The objective of this pioneering study is to carry out an inventory of the dung beetles that live in UGACR in the area of ​​San Luis, Monteverde, to generate baseline information about dung beetle diversity in this region.

8
Clave dicotómica para la identificación de escarabajos coprófagos de la zona de Monteverde elaborada por Ángel Solís.//                                                                                                            Dichotomous identification key of dung beetles of the Monteverde region made by Angel Solis.
18
Diagrama de las características morfológicas para la identificación de escarabajos coprófagos.//
Morphological characters diagram for the identification of dung beetles.

Para este estudio se utilizó una metodología que se ha aplicado en otras investigaciones en Costa Rica de escarabajos coprófagos por el entomólogo  Ángel Solís, experto en escarabajos (Coleóptera). En el Campus de UGACR dentro del bosque se escogieron dos áreas de muestreo y en cada una se determinaron 10 puntos a una distancia de 40 metros entre sí, siendo un total de 20 puntos con 4 trampas cada uno.

The methodology used in this study has been applied elsewhere in Costa Rica by the entomologist Ángel Solís, an expert in beetles (Coleoptera), but has never before been conducted in San Luis. In the forest of the UGACR Campus, two sampling areas were chosen. At both of the sampling areas, 10 sites with four traps each were placed at a distance of 40 meters apart from each other, a total of 20 sites with 4 traps each.

Imagen_GoogleEarth.jpg
Imagen del área de estudio mostrando los 20 puntos de recolecta en el Campus de UGACR.//
Study area image showing the 20 sampling sites at UGACR Campus.

Las cuatro trampas funcionaron como pseudoréplicas, la idea de usarlas fue para asegurarse de que cada punto de muestreo capturara escarabajos coprófagos, ya que podrían ser comprometidas por interferencias ambientales durante el periodo de recolecta, como por ejemplo inundación a causa de lluvia o por mamíferos que desearan robar el cebo.

 The four traps worked as pseudoreplicates, helping to ensure that beetles were collected at each site given the risk of any individual sample being compromised during the collection period from environmental interferences, such as flood because of rain or mammals stealing the bait.

 

23
Dionnè colocando en el sitio de muestreo un vaso plástico que funciona como trampa de caída para los escarabajos.//
Dionnè installing in a sampling site a plastic cup that works as a pitfall trap for dung beetles.
21
Dionné y José instalando techos con el propósito de proteger las trampas de la lluvia.//
Dionné and José installing a plastic covering to protect the trap from rain.
2
Un sitio de muestreo con las cuatro pseudoréplicas, llamadas trampas de foso que consisten en un vaso de plástico lleno con agua con jabón, estos son colocados a nivel del suelo, al lado de una cuchara con excremento de cerdo como cebo para atraer a los coprófagos. Cada trampa fue protegida por un techo, constituido de dos palos de bambú y una bolsa plástica.// One sampling site with the four pseudoreplicates, called pitfall traps. They are made from putting a plastic cup of soapy water level with the ground and are placed next to a spoon baited with pig excrement to attract the dung beetles. Each trap was protected from rain by a covering made from bamboo sticks and plastic bags.

Después de 48 horas de haber sido instaladas las trampas se recolectaron las muestras, posteriormente se limpiaron los individuos, se separaron y se conservaron en alcohol. Para la fase de identificación del estudio colaboró Ángel Solís. Cada individuo se identificó por sus diversas características, por ejemplo, por la cantidad y ubicación de los cuernos, el tamaño de su cuerpo y la forma de las patas.

After 48 hours of trap installation, the samples were collected and the individuals were cleaned, separated, and stored in alcohol.Our team collaborated with Ángel Solís for the identification phase of the study. Characteristics such as the number and placement of the horns, the size of the body, and the shape of the legs were used to differentiate the dung beetle species.

 

7
Fase de limpieza de los individuos, etiquetado y preservación en bolsas plásticas con alcohol.//
Individuals cleaning process, labeled, and preservation inside plastic bags filled with alcohol.
3
Fase de identificación y cuantificación de individuos con la colaboración de Ángel Solís e incorporación en base de datos. En orden de aparición: Dionné Mejía, Ángel Solís, José Montero y Martha Garro.//
Identification and quantification phase of individuals with the collaboration of Ángel Solís and incorporation into the database.
16
Recipientes plásticos con alcohol con individuos de las especies identificadas, listos para ser montados.//
Plastic containers with alcohol with individuals of the identified species, ready to be mounted.

Actualmente Dionné se encuentra desarrollando una colección física de referencia de los escarabajos recolectados, con el fin de compartirla con los visitantes de UGACR como parte de la actividad llamada “Insect-O-Rama”. En esta actividad didáctica se comparte sobre la importancia de los insectos, el cómo recolectarlos, conservarlos, e identificarlos a diferentes niveles taxonómicos.

Dionné is currently developing a physical reference collection of the dung beetles from this research, which will be able to be shared with UGACR visitors as part of the activity called “Insect-O-Rama”. This didactic activity shows the importance of insects, how to collect, conserve, and identify them at different taxonomic levels.

29

27
Fase de montaje de los individuos recolectados para construir la colección física de referencia.//
Mounting phase of the individuals collected to build the physical reference collection.

Los resultados generados de esta investigación se publicarán en un artículo científico para que esta información llegue a personas interesadas en el tema. También se hará una presentación para compartir los resultados con la comunidad de Monteverde.

The results generated from this research will be published in a scientific article to share this information with other people interested in the subject. Another goal is to make a presentation to share the results with the community of Monteverde.

28
Individuos de Dichotomius annae montados y listos para ser disecados para posterior incorporación a la colección física.//
Dichotomius annae individuals mounted and ready to be dry for later incorporation to the physical collection.

Además, este estudio establece una nueva línea de investigación para futuros estudios, brindando la oportunidad a nuevos investigadores, estudiantes y pasantes de profundizar en la temática de escarabajos coprófagos de la zona.

This study establishes a new research line for future studies, providing the opportunity for new researchers, students and interns to delve into the topic of dung beetles of the area.

Para más información contactar a José Montero al correo electrónico/ For more information contact José Montero to the email : researchcr@uga.edu

Revisión científica por José Joaquín Montero Ramírez

Escrito por Mariela Vásquez González pasante de fotoperiodismo/ photojournalism intern

 

Retos de conservación: Humanos, comunidad y medio ambiente/ Conservation challenges: Humans, community and environment

 

9

Jordan Rogan explorando, de camino a una de su cámara trampa
Jordan Rogan exploring, in the way to one of her camera traps

 

Jordan Rogan es una estudiante de doctorado del departamento de Ciencias de la Vida Silvestre y Pesquería de la Universidad A&M de Texas y forma parte del Laboratorio de Monitoreo y Evaluación de la Biodiversidad. Ella ha desarrollado su proyecto de investigación con el apoyo técnico de UGA Costa Rica desde junio del presente año, titulándose: “Resiliencia, distribución y conservación de mamíferos medianos y grandes en Monteverde, Costa Rica”.

Su investigación busca identificar los requisitos que necesitan los mamíferos medianos y grandes de un hábitat para conservar la biodiversidad frente a los cambios en la cobertura de la tierra y la fragmentación del hábitat. La cobertura de la tierra en este caso se refiere a la cantidad de vegetación nativa que cubre un territorio. La fragmentación sucede cuando un área boscosa continua es transformada en un área con parches de bosque aislados. Ambos procesos pueden suceder por cambios antropogénicos, estos son los usos que le da a la tierra el ser humano.

Jordan Rogan is a Ph.D. student at Texas A&M University in the department of Wildlife & Fisheries Sciences and she is also a member of the Biodiversity Assessment & Monitoring lab. She has been developing her research project with the technical support of UGA Costa Rica since June of this year. Her project is titled “Resilience, distribution and conservation of mid-large mammals in Monteverde, Costa Rica”.

Her research aims to identify the requirements of medium and large mammals in a habitat in order to conserve biodiversity in the face of changes in land cover and habitat fragmentation. Land cover, in this case, refers to the amount of native vegetation that covers an area. Fragmentation is when a continuous forest area is transformed into isolated forest patches. Both processes can occur due to anthropogenic, or human-caused, changes to the environment.

 

5

Las principales herramientas que Jordan utiliza en las giras de campo son: las cámaras trampa, el GPS (Sistema de Posicionamiento Global), tarjetas de memoria, baterías recargables, cinta topográfica biodegradable para marcar donde se instalaron las cámaras, clinómetro y densiómetro, machete, cinta métrica, y un cuaderno.
The materials that Jordan uses in the field include: camera traps, GPS (Global Positioning System) device, memory cards, rechargeable batteries, biodegradable flagging tape, a clinometer and a densiometer, a machete, measuring tape, and a field notebook.

 

A nivel mundial la cobertura de la tierra de los bosques tropicales se ha degradado en más de un 50%, la pérdida de vegetación nativa está relacionada con la incapacidad de un ecosistema para mantener su funcionalidad, amenazando la biodiversidad.    

Según esta investigación gran parte de los estudios relacionados al tema, se han centrado exclusivamente en aves y pequeños mamíferos, sin embargo, este estudio se centra en mamíferos medianos y grandes. Estos mamíferos son los de un peso mayor a 1 kilogramo como, por ejemplo: Puma (Puma concolor), Pizote (Nasua narica), Ocelote (Leopardus pardalis), Chancho de Monte (Pecari tajacu), entre otros.

La investigación aborda la pérdida de hábitat y como esta influye en la población de los mamíferos de mediano y gran tamaño, según Jordan estos mamíferos “desempeñan un papel importante en la preservación de los procesos e integridad de los ecosistemas y representan un grupo particularmente vulnerable al cambio de cobertura de la tierra”.

Land cover change has resulted in the degradation of over 50% of tropical forests globally, resulting in the loss of native vegetation. This loss is associated with the inability of an ecosystem to maintain its functionality, thus threatening biodiversity.

According to this research, most of the studies related to the subject have focused exclusively on birds and small mammals, however, this study focuses on medium and large mammals. These mammals weigh at least 1 kilogram and include the Puma (Puma concolor), White-nosed Coatimundi (Nasua narica), Ocelot (Leopardus pardalis), Collared Peccary (Pecari tajacu), among others.

The research investigates the loss of habitat and how this influences the populations of medium and large mammals. According to Jordan they “play an important role in preserving ecosystem processes and integrity and represent a group particularly vulnerable to land cover change”.

 

6

La altura para instalar una cámara trampa es entre 30 a 50 cm, se mide desde la base del árbol. Esta medida puede variar dependiendo si el árbol se encuentra en una pendiente
The height for install the camera traps is between 30-50 cm from the base of the tree, it can vary depending on whether the tree is on a slope

 

Los mamíferos de mayor tamaño son vulnerables a la fragmentación y a los cambios de la cobertura de la tierra, requieren de más recursos, ocupando territorios de mayor cobertura boscosa continua, además de ser blanco de los cazadores. Cada especie requiere de diferentes recursos para sobrevivir, por ejemplo, los que son depredadores necesitan de mayor cantidad de presas para alimentarse, y como resultado mayor cantidad de bosque continuo. Lo anterior se refiere a los rasgos funcionales, estos representan las diferentes características biológicas que definen a cada especie, con las que interactúan con el medio ambiente.

Jordan estudia múltiples especies en vez de centrarse en solo una; esto, en combinación con los rasgos funcionales, permiten que la investigación tenga una comprensión más profunda del tema. El objetivo del estudio es comprender las consecuencias sobre la biodiversidad por la pérdida de vegetación nativa en un hábitat y determinar así las áreas prioritarias para la conservación de los mamíferos bajo estudio.

Large mammals are more vulnerable to fragmentation and land cover changes because they require more resources, inhabit larger territories of continuous forest cover, and are targeted by hunters. Each mammal species requires different resources in order to survive. For example, those that are predators require larger prey populations, and as a result, greater continuous forest. Altogether the sum of biological characteristics that define each species is referred to as the functional traits, and these influences how each species interacts with the environment.  

Jordan studies multiple species instead of focusing on just one; this, along with the consideration of functional traits, allows her research to have a more comprehensive scope. The objective of this study is to understand the consequences of the loss of native vegetation in a habitat on biodiversity and to determine the areas of conservation priority for the mammal species under study.

 

4

Instalando baterías y tarjetas de memoria en la cámara trampa, este proceso le permite a la investigadora recolectar información cada 3 semanas
Installing batteries and a memory card in a camera trap. This process enables her to collect data every 3 weeks

 

El programa Ciencias Aplicadas de la Biodiversidad del doctorado del que Jordan forma parte, prepara estudiantes para que puedan abordar retos de conservación involucrando tanto a las personas de las comunidades como también al medio ambiente, incluyendo ambos elementos dentro de un mismo sistema ecológico, como dice Jordan “es ahí donde la conservación sucede”. Es por esto que, además de recolectar datos de las cámaras ella entrevista a las personas dueñas de propiedades complementando así su estudio con saberes de personas locales.

La localidad en que Jordan realiza su proyecto es la Zona Protectora Monteverde Arenal y el Corredor Biológico Pájaro Campana en Costa Rica. Su investigación involucra cámaras trampa que coloca en sitios de estudio determinados a través de esta zona, recolectando datos acerca de la “presencia o ausencia de los mamíferos”. Instala las cámaras durante 45 días en cada sitio que luego reubica. 

Su intención es contribuir específicamente con la conservación del Corredor Biológico Pájaro Campana, su interés es presentar los hallazgos de la investigación a la comunidad, a ONG interesadas en conservación y que a través de un estudio integral se desarrolle un manejo ambiental adecuado.

The researcher is part of the Applied Biodiversity Sciences (ABS) Ph.D. program, which prepares students to tackle complex conservation challenges, involving both human communities and the environment, including both elements within the same ecological system. According to Jordan “there is where conservation takes place”. For this reason, Jordan interviews the owners of properties in her study area, in addition to collecting data from camera traps, complementing her study with the knowledge of local people.

The study areas of Jordan´s project are the Monteverde Arenal Protected Zone and the Bellbird Biological Corridor in Costa Rica. Her research utilizes camera traps placed in predetermined study sites throughout these areas, gathering “presence/absence data on mammals”. The camera traps run for 45 days at each study site before they are rotated to new sites.

Jordan´s intention is to contribute with conservation, specifically within the BellBird Biological Corridor. She plans to present her research findings to the community and to NGOs interested in conservation in order to promote integrative conservation management that incorporates the needs of both humans and the environment.

 

 

IMG_1369

Algunos resultados preliminares obtenidos a través de las cámaras de Jordan:
Ocelotes (Leopardus pardalis)
Some of the preliminary results of Jordan´s study, obtained from camera traps: 
Ocelots (Leopardus pardalis)

pecary

Algunos resultados preliminares obtenidos a través de las cámaras de Jordan:
Chancos de monte  (Pecari tajacu)
Some of the preliminary results of Jordan´s study, obtained from camera traps: 
Collared peccaries (Pecari tajacu)

 

Para más información contáctese al correo /For more information contact the email:  roganjordan23@tamu.edu

 

Mariela Vásquez G. pasante de fotoperiodismo/ photojournalism intern

Iniciativas de descontaminación en UGA: El Biodigestor / UGA decontamination initiatives: The Biodigestor

1

UGA Costa Rica en el año 2008 quiso desarrollar el campus de una manera sostenible. Para esto evaluó y creó un plan de manejo para la finca, en el que se decidió incorporar en el año 2011 el primer biodigestor o sistema de descontaminación productiva de aguas residuales dentro del campus, un prototipo en el área de Monteverde.

La biodigestión consiste en la fermentación producida por bacterias anaeróbicas, componentes de las excretas (humanas o animales), sobre materia orgánica, éstas se aprovechan ubicándolas en un contenedor hermético, donde se generan altas temperaturas que destruyen y reducen las bacterias que podrían causar enfermedades. Las altas temperaturas llegan a “destruir hasta el 95% de los huevos de parásitos y casi todas las bacterias y protozoarios causantes de disentería” (Botero y Preston, 1987, P. 4). Es por esto que los residuos luego de ser procesados pueden ser aprovechados para la finca como fertilizante y abono.

In 2008, UGA Costa Rica wanted to develop the campus in a sustainable way. A plan to manage the farm was created, and in 2011, UGA decided to incorporate the first biodigestor/decontamination system of wastewater within the campus.  This biodigestor was a prototype in the Monteverde area.

 The biodigestion process occurs via the consumption of organic material by anaerobic bacteria. These organic components consist of human or animal excrement and other organic matter. The process occurs when these components are placed in an airtight container, where the anaerobic decomposition of these organic materials generates high temperatures that destroys or greatly reduces the concentration of bacteria that could cause illness. High temperatures “destroy up to 95% of parasite eggs and almost all bacteria and protozoa which cause dysentery” (Botero & Preston, 1987, p. 4). This is why the waste can be used on the farm as fertilizer after being processed.

 

2

El encierro de los animales se limpia para dirigir las excretas a un filtro
The animal enclosures are cleaned up, excretement are directed to a filter

 

3

El filtro por el cual pasan las excretas para ser dirigidas al reactor evita que pase material grueso o duro que puede ser difícil de descomponer dentro del biodigestor esto también evita daños a la bolsa.
The filter through which the excretion passes separates out the thick or hard material that would otherwise damage the reactor, or be difficult to decompose.

 

6.jpg

El reactor es una bolsa hermética donde se produce la digestión anaeróbica, ahí se descompone el material orgánico que viene del establo para luego pasar al tratamiento secundario en las lagunas. Es en este proceso donde también se produce el biogás.   
The reactor is an airtight bag where anaerobic digestion takes place, organic material that comes from the stable decomposes there to pass to the secondary treatment in the lagoons.  In this process that biogas is also produced.

 

7

Lagunas con plantas acuáticas para el tratamiento secundario de los efluentes que provienen del biodigestor.
Lagoons with aquatic plants for the secondary treatment of the effluent that comes from the biodigester.

 

Ya para el año 2013, por la eficiencia del primer prototipo instalado en la finca, se desarrolló otro biodigestor en el campus principal. Como resultado de ambos biodigestores se ha logrado procesar una mayor cantidad de materia orgánica generando más abono sólido y líquido, así como más biogás. Además, se implementaron las lagunas, donde el agua que sale del biodigestor de la finca lleva un tratamiento secundario con plantas acuáticas, las cuales absorben la materia orgánica restante, terminando de descontaminar las aguas residuales. Estas plantas también son utilizadas como alimento para cerdos y vacas.

La digestión anaerobia, como resultado produce una mezcla de gases que sirven como combustible (biogás), que puede ser aprovechado en diversos usos como fuente de energía renovable produciendo calor y electricidad.

La tecnología del biodigestor en el campus es considerada una herramienta multipropósito muy provechosa, ya que genera combustible, abono líquido y sólido. Además, el biodigestor juega un papel importante en la conservación, reduciendo la contaminación ambiental, según Carreras N. (2017, 3p.) el principal componente del biogás es el Metano (50-70%), este gas, contribuye al efecto invernadero y con esta tecnología en vez de ser liberado a la atmósfera es aprovechado como fuente de energía.

By the year 2013, due to the efficiency of the first prototype installed on the farm, another biodigester was developed on the main campus. As a result, both of the biodigesters have been able to process a greater amount of organic matter generating more solid and liquid fertilizer, as well as biogas. In addition, the lagoons at the farm were implemented, where the water leaving the biodigester has a secondary treatment with aquatic plants, which absorb the remaining organic matter, finishing the decontamination process of the waste water. These plants are also used as food for pigs and cows.

Anaerobic digestion as a result produces a mixture of gases that serve as fuel (biogas), which can be exploited in various ways as a source of renewable energy by producing heat and electricity. 

The biodigester technology on campus is considered a useful multipurpose tool, since it generates fuel, liquid and solid fertilizers, as also an educative oportunity. According to Carreras N. (2017, 3p.) the main component of biogas is methane (50-70%). This gas, which is known as a major contributor to the greenhouse effect, is harnessed as an energy source, rather than released into the atmosphere.

 

28

Cámara de tratamientos de aguas residuales del campus principal
Main campus sewage treatment chamber

 

32

Tubería que transporta el gas hacia el reservorio de biogás y tubería que comunica ambas cámaras para el proceso de tratamiento de aguas residuales
Large pipe on left: pipe that transports the biogas to the reservoir seem below.  Horizontal pipe consolidates both chambers for the wastewater treatment process

 

26

Reservorio de almacenamiento de biogás.
Biogas storage reservoir

 

34

El biogás siendo utilizado para el gas de la cocina
Biogas being used for gas in the kitchen

 

A través de los años en los que UGA Costa Rica ha experimentado con esta tecnología, se ha logrado compartir el conocimiento e instalar cinco biodigestores en diferentes fincas de la comunidad de San Luis y Monteverde.  Esto se ha logrado a través de programas académicos con estudiantes, donde se ha fortalecido el aprendizaje a través de la experiencia.

Through the years in which UGA Costa Rica has experimented with this technology, it has been possible to share knowledge and install five biodigesters on different farms in the community of San Luis and Monteverde. This has been achieved through academic programs with students, where their experience has been strengthened through service learning.

Mariela Vásquez G. pasante de fotoperiodismo/ photojournalism intern


Bibliografía

Botero R., Preston T.R. (1987). Biodigestores de bajo costo para la producción de combustible y fertilizante a partir de excretas. “Manual para su instalación, operación y utilización”. Recuperado de http://www.produccion-animal.com.ar/Biodigestores/04-biodigestores.pdf

Carreras N. (2017). CURSO DE FORMACIÓN TEÓRICO-PRÁCTICO DE ENSAYOS EN BACH (BMP) Y CONTINUOS DE DIGESTIÓN ANAEROBIA BASADOS EN LA NORMA VDI 4630. España: CIEMAT.

 

It’s a Monkey, It’s a Margay! No, Just Ernest Again.

 

The T.A.C.T. (Terrestrial and Arboreal Camera Trapping) project started when Ernest was wondering why there is hardly any information on the stratification of communities of medium to large mammal throughout the rainforest.

Ernest Minnema has been traversing the world for the past 10 years as a naturalist at various field stations. Being a new-age explorer has led him throughout Australia, Brazil, Guyana, Panama, and now Costa Rica.

Originally from the Netherlands, Ernest has grown into a exemplary force on the UGACR naturalist team. For the past 14 months, he has illustrated the most pristine night hikes, carbon offset work, sustainability tours, and of course, mammal talks.

He now looks into the composition of mammal communities through different layers of the forest. His main focus is what species are present, what are their behaviors, and their spatial and temporal distribution. This starts to draw patterns of when and where we find some of the most elusive animals in the world, with a central reference point in the pre-montane wet forest.

“Any time I had an issue as a kid, I would walk into the forest, climb up into a tree and find a seat… that was my way of escaping the world below when I wasn’t happy. It’s because most people don’t look up too often.” – Ernest Minnema

CAB_2017_548_ChasingPerezoso

Ernest has committed to mentorships and personal practice to acquire the skills necessary to quicken his efficiency. Now he spends two and a half days climbing twenty trees to collect data every three weeks.

It is relatively common to see camera trapping on the forest floors, even in our surrounding reserve areas. What is incredibly unique about Ernest’s work is that it includes mammals in all four layers of the rainforest: the forest floor, understory, canopy, and the emergent layer of the canopy. Some mammals are rarely found on the ground, so it’s a new look into the entire animal kingdom.

This particular practice is something new to all rainforests, not only Costa Rica. He breaks the mold by conducting one of the only arboreal camera trapping projects in Central America.

The goal to close out the year of data will not only show differences in stratification but the change of diversity and migration between the two seasons.

“Seeing a large mammal is one of the hidden gems in the forest.” They are some of the most elusive animals who demand space to exist, travel, migrate, and hunt.

CAB_2017_222_June.jpg

Ernest also has a deep love for arachnids and reptiles, but figured that his climbing and camera skills could combine to fit a greater need in science.  It’s not about what he could do, but what was valued in the scientific community.

Because there isn’t much scientific precedence or peer-reviewed literature concerning mammal distribution in the area, it will create baseline knowledge to test more theories in the future. He’s formulating a recipe to blaze a new trail in mammal research.

Even having 20 camera traps can only inform us to that specific, localized area. One of Ernest’s main struggles is finding methods for statistical analysis to calculate commonly used ecological indices from what he captures on his cameras. These indices are needed to extrapolate the generated knowledge to the vast areas that these mammal communities inhabit.

The academic soundness of his research is the most puzzling part of his process.“So as good research should do, it always raises more questions.”

“You have information, so that is the data set, but creating knowledge from that information – that is the academic challenge, how to go from information to knowledge.”

CAB_2017_1141_MarchLeisure

This margay video wiggles into a special place in our hearts. It’s one that we could hear Ernest yelling about from across campus. Ernest usually positions the trap for a horizontal stretch of the tree, which in this frame is to the top-right edge off screen. Lucky camera number 13 was repositioned by a curious capuchin monkey just days before this video, making it possible to see this margay grooming itself.

Before the generation of camera traps, mammal researchers had a different experience gathering data through short-term direct observations. These methods require long sampling transects and frequently result in a low number of encounters, because they are highly dependent on visibility. The real die-hards will travel with a troop of monkeys for a week to a month perhaps, pitching a hammock and hoping they can catch the monkeys to hang with them the next day.

Camera trapping is a proven method to overcome these limitations. They can detect previously undocumented presence of elusive and rare species, previously undocumented behavior for a variety of animals, and even discover new species.

160902_REE_UGACR_Climbing_0072

Now we start to ask more specific questions:

“We take this strategy from the forest floor, but it could very well be different… If we take out that [emergent canopy] layer, what does the animal actually do?… If I can show that in the rainy season we have a lot of Mexican Hairy Porcupines, then someone else can say, but why?”

“Do we only find these patterns in the secondary forest, or do the animals act the same in the primary forest?”

A great example is the spider monkey, known for relying heavily on primary forest. It was reported last year in 2016 during the same part of the season as Ernest trapped it this year – something we wouldn’t have known if not for his cameras.

The spider monkey is now the 21st target species of mammal Ernest has found on campus. Outputs like these are fairly hard to come by for someone who doesn’t use any bait for their traps. All of the sightings have happened in a non-biased fashion.

Ernest’s ability to wander with the general public is what makes him so approachable. That’s why he’s decided to share his project with staff and friends.

 

“I like to tell people that I never really started climbing – I just never stopped; it’s only changed forms.”

It’s unlikely that Ernest will ever stop climbing. There are always new opportunities on his plate, whether it be academics, or his experience in the formal education spectrum, or being able to mentor others to facilitate their research. He teases the idea of organizing data into a PhD project to continue in academia.

One of his current pleasures is taking our local workers and community up for tree-climing tours. It’s growing into a favored bonding activity of the staff, interns, and locals in San Luis.

Because his project is completely self-funded, he is now reaching out to the community in order to maintain his equipment and his project. You can support his GoFundMe page here.

 

This story features a collaboration of Molly Bond’s photos from the community climbing workshop, a profile of Ernest setting the trap by previous intern Rachel Eubanks, and photos taken by current Photojournalism Intern Charles Austin Boll.

Fabricio Camacho: The Cognitive Composter

CAB_2017_5545_May.jpg

Why do humans produce double the amount food that the entire world needs, but one billion people are still left hungry every day? How can we reduce the global impact of an agricultural industry that takes up 38 percent of Earth’s land mass?

On his childhood farm, a young Fabricio was wondering the same: why are they clearing the trees from the coffee plantations? Why do the coffee plants need chemicals? Why are the chemicals held in a room that I am not allowed in? These are questions Fabricio Camacho asked on his grandparent’s coffee farm in the 1980’s in the southern region of San Isidro, Costa Rica.

Now as the director of UGA Costa Rica, Fabricio is asking similar questions for his PhD research. This time, it’s through a more scientifically polished and globally pertinent lens.

He has a vision to fuse traditional methods of farming with the latest science. The goal is to produce coffee plants just as efficiently with a fraction of the emissions, cutting out synthetic fertilizers that deteriorate soil quality and emit greenhouse gases. Fabricio believes that we can sequester carbon and safeguard our water supply inside a rich soil that is facilitated by waste products that are already abundant.

Fabricio thinks that by using microorganisms and compost that is accessible to farmers, we can make a steep turn towards improving global health – and he’s got 1,600 plants outside the campus nursery to prove it.

Young Fabricio saw many of the fields on his home farm become degraded because of chemical use. This translated to special consideration for the long-term health of coffee plantations.

The first goal is substitution of synthetic fertilizers by purely organic matter. Because coffee production is the second largest crop in Costa Rica, the outcome could become a nationally adequate solution for carbon gas emissions.

“The idea could be adopted by just coffee farmers in Costa Rica, or the model could be introduced around the whole world” – Fabricio Camacho

He has eight different soil mixes randomly placed within each of the 64 blocks. The blocks are placed together to organize soil treatment throughout the experiment. Two of the eight are standard controls that farmers already use: basic soil and synthetically produced treatments. Two of these formulas are renditions of what Fabricio calls “optimized compost.”

The two optimized compost treatments have food waste products like banana leaves, wood chips, biodigestor sludge, and microorganisms that are available in the area, making his solution accessible to everyone.

Fabricio’s project delves into microbiology to understand how the MM (Mountain Microorganisms) and biodigestor sludge can facilitate nutrient absorption by the coffee plants and how much more carbon can be sequestered.

All of the plants are located in the same area to standardize lurking variables such as sun cover, rainfall, insect herbivory, and the microclimates of each block. His study will be able to be reproduced with 95 percent accuracy. This is lively science to be seen in an outdoor classroom where we can share the process with guests, students, and other researchers.

Fabricio takes every opportunity to share and crowd-source his ideas. The first planting day involved our UGACR maintenance team, most of whom have their own farms, to help weigh and mix the composts for the soil testing. A group of local farmers came to see and study the experiment due to their desire for new solutions.

Fabricio gladly shares the recipe, like teaching students from Fit4Earth how to bake a compost cake. These are young ticos who can apply the knowledge in their country, where 8% of the citizens work on coffee farms.

Fabricio’s hypothesis is that the optimized compost with purely organic material will facilitate coffee plant growth equally or better than the synthetic alternatives. The main objective is promoting sustainability by utilizing the natural resources that we have available. It can be more cost efficient because this method is easily obtainable within our environment.

CAB_2017_00026_Women's March

San Luis is a great example of a sustainable and organic model. If we prove this hypothesis correct, our community can serve as an inspiration to others. Through research and technological innovation we can bring the Costa Rican ecosystems back up to health by transitioning back to agro-forestry across the country.

The sustainable farms present in the community could use more strength for their plants. We could prove these soils to create more strength to grow, absorb nutrients, and contain water to hold throughout the dry season.

The common goal of Fabricio and participating interns is to bridge the gap between the practical farming community and the latest scientific breakthroughs. This experiment using unique ingredients is still one-of-a-kind on Earth. Fabricio is branching out by traveling to Germany for a month this summer to learn more about carbon sequestration.

It is already known that agro-forestry is more sustainable than monocultures. The questions Fabricio will resolve may prove that we don’t need any synthetic chemicals to maximize production. We can return to traditional methods with a newfound knowledge to gradually improve global health.

Blog post and photos by Photojournalism Intern Charles Austin Boll

The Man Behind the Mariposas

Eyes peer over the cabinets as José decides which butterfly case to show. Each is organized by family, pinned nicely in order to see the wings with an individual label for each subject.

José Joaquín Montero Ramírez is creating a library of information that many generations will be able to pass down. As well as being the Research, Instruction, and Internship Coordinator for UGA Costa Rica, José also leads workshops and lectures on his expertise – butterflies and moths.


UGA conservation inventories can be found in our lab, where the specimens are kept in sealed cases and organized by families. These collections are expected to last for 300-500 years and will be studied by future generations to tell our history.

“Having those specimens in a drawer with a label that specifies time, location, altitude, and GPS coordinates is extremely important because it’s the only way for you, in the future, to reveal a story.” – José Joaquín Montero Ramírez

Through his hands-on education and his growing collection of self-written books, that is exactly what José is doing – telling a brilliant story. We use the collection as one of our main tools to show students how thorough research is conducted.

José published two books on the Butterflies and Moths of Costa Rica in 2007. Now he is using the UGACR collection of over 1000 specimens collected on campus, beginning in 1998, to write his third book describing the 250 species that are found in San Luis de Monteverde.

CAB_2017_1395_Fit4Earth.jpgJosé’s main goal through teaching is to promote Bioliteracy.  This means that people study a particular biology well enough to become fluent in understanding the causes and effects, pushes and pulls, between environmental stimuli and species. Our field observations tie together butterflies with the plants that they use to eat and pupate, for example.

UGA Costa Rica is a place where we can constantly make observations, proving step-by-step that butterfly and moth behavior is a key indicator of environmental health.

Looking to publish his third book will bring him closer to San Luis, focusing on species that surround us here on campus. Costa Rica has .03 percent of the world’s land mass, but yet 8 percent of its butterflies and 11 percent of the world’s moths. Our campus is a magnifying glass to hold to the butterfly world.

José Joaquín Montero Ramírez has worked for a non-profit science organization as well as contributing to the National Museum of Costa Rica’s butterfly and moth collection.

As the curator in charge of collection at Costa Rica’s National Biodiversity Institute (INBio), José would organize parataxonomists, organize samples from families to species level, and teach new collectors how to preserve the specimens. Every curator would focus on one or more families

A research center in Ontario, Canada at the University of Guelph has a DNA reader that creates a library of barcodes of life for each species.

Butterfly researchers send a leg of the specimen to be tested by the machine and receive a detailed description of the genes in return (barcode). This information is crucial to the ability to delineate species boundaries, specifying which insect is a sibling or cryptic species, family member, distant cousin species, or a newly found species all together.

During his work with INBio, José was at the forefront of differentiating species using this form of identification. The family of moths that Jose was in charge of, Lasiocampidae, grew from 130 to 203 species through his leadership.

“When you have a collection, it implies that you have knowledge, and in this era of technology, if you have knowledge, you have a lot of power. Collections, for me, represent power in terms of having the opportunity, data, and the information to teach young people and show them that you have to collect butterflies and moths because it’s the only way to conserve.” – José Joaquín Montero Ramírez

Students are able to take a sample of a species, unravel their net to hold their butterfly gently, understanding that the interaction between human and insect can be purely positive without harming the butterfly. Then they sit down with the page of the butterfly family in the book and make their guess to exactly what species they have found.

They will learn the scientific and common name. José will often share amazing details about a unique characteristic or personality trait of that particular species.

The kids realize the animal and form a tangible connection between themselves and a certain species of insect. This can feel something quite new to students of all age, who are normally timid to hold insects, and show them that there’s no way to gain knowledge of a species if we don’t interact with it.

UGACR bridges the gap between the forest and the laboratory where we study. At this field station, a wealth of information is just right outside the doors of the lab. One of the main goals of this activity is to teach people how citizen science is applicable.

There are species fluttering around us that we still don’t know about; we are exploring new species month to month. Living in this unique forest that shares such a vast border with reserved land creates an atmosphere of discovery through some unexplored frontiers of biodiversity, sometimes flying right past your eyes.

Words and photos contributed by Photojournalism Intern Charles Austin Boll

A Comprehensive Sample of the Streams

Last week marked an important step in the most comprehensive study of water quality in the Bellbird Biological Corridor. Dr. Thomas Shahady returned to gather another round of samples, continuing to solidify some hypotheses in his water research.

Shahady is the current director of the Center for Water Quality at Lynchburg College in Virginia. He practices a three-pronged research model with students and interns he teaches in both the U.S. and Costa Rica.

He has been gathering data from 18 field sites in the Bellbird Biological Corridor since 2013. By taking multiple trips to UGACR every year, his information is adding up to give us a general idea of what concerns the community will face.

Researchers Martha Garro Cruz and José Montero tagged along with Darixa Hernandez and Shahady for three days to continue the collection of data and samples. The methods comprise three key steps:

1.) Physical parameters:  A cross section is chosen to measure the depth across every meter of the river’s width. This gives us information on water volume.

The velocity is also measured at each of these points using a flow meter. The combined information is used to measure the river discharge.

2.) Chemical parameters: Water samples are collected in order to measure phosphorus and nitrogen levels. This can tell us if there’s any external input of these chemicals by fertilizers, for example. A YSI multimeter is used to measure pH, ammonium levels, dissolved oxygen, and water temperature.

3.) Biological parameters: Samples of the aquatic macroinvertebrates are taken by placing a square net facing upstream, then turning over rocks and leaf litter in front of the net. Macroinvertebrates are released from their habitat and drifted into the net by the water current. Based off their continuing research, they have developed a percentage model of what the standard content should be for each family of macroinvertebrates. Only certain families of macroinvertebrates are resistant to large amounts of pollution. This makes it possible to decipher water quality based on what aquatic life is present.

Escherichia coli and number of fecal coliform colonies present are also assessed. Water samples are collected and then taken to the lab where the water is filtered through a membrane, a growth medium for bacteria is added and then these are placed in petri dishes. After three days of incubation, blue (E. coli) and red (other coliform colonies)  are counted.

Keeping track of the macroinvertebrate populations in the stream can be conducted as citizen science – all you need is a net, containers, and an insect key. This is why Shahady wants to show a correlation between chemical pollution and invertebrates present. The goal is to empower the communities to be more cognizant about the pollution levels in their water shed.

Through this research, Shahady has discovered several alarming issues. He is faced by the ambiguity of what happens with Costa Rica’s waste water (black and gray water).

They are now aware of field sites where water is simply disappearing. Farmers (and a pineapple plantation) have been extracting an unregulated amount of water for irrigation when the weather is dry. In a single river the difference is drastic based on the amount of anthropogenic influence in adjacent locations.

After compiling all of the results, Shahady will have plentiful evidence to show community representatives. The results will be published in written form along with an index for citizens to monitor their river and streams, driving more policies to be implemented to water quality in the Bellbird Biological Corridor. Check out the links below for Thomas Shahady’s visual presentations.

Assessment of Stream Water Quality in BellBird Biological Corridor: www.periscope.tv/w/1BRKjAvPgNwxw

Creation of Water Quality Index: www.periscope.tv/w/1ypKdAvqbQdGW 

Blog by Photojournalism Intern Charles Austin Boll, with special contributions by Darixa Hernandez.

Combating Bird Strikes Through Research and Design

160630_REE_UGACR_0043
A rufous-breasted wren, photographed by Rachel Eubanks at the University of Georgia in Costa Rica on Wednesday, June 22, 2016.

At the University of Georgia in Athens, I walked to many of my classes through the open plaza that connects the psychology building to the journalism building. Before skipping downstairs to the basement “photo cave” for my photojournalism classes, I would sometimes see out of the periphery of my right eye a small, colorful creature lying on the gray cement below the building’s four stories of windows.

Sometimes other students would also notice the dead birds on the plaza, stopping to snap photos on their iPhones and sending them to their friends, perhaps alongside broken heart emojis. I, too, would stop for a moment and wonder why birds died so often by my college building, but never bothered to look up and realize the reason.

Bird strikes have become normalized in many of our minds.

One thousand six hundred forty miles away from Athens as the crow flies, the University of Georgia’s campus in Costa Rica conducts research and maintains efforts to prevent the occurrence of bird strikes.

As soon as you walk to the edificio principal, or the student union, you can see window decals in the shapes of hummingbirds, butterflies and toucans. Birds often mistake reflections for a continuation of the outside environment or see through the windows and think they can fly through them. These window stickers, when used in large quantities, act as one of many ways we can prevent the bird injuries and deaths by reducing the incidence of bird strikes.

160719_REE_UGACR_Press_0004
Large windows reflect the environment outside, creating confusing scenes for birds and greater opportunity for bird strikes. Photo by Rachel Eubanks.

I recently sat down with Martha Garro Cruz, UGA Costa Rica’s Academic Programs Facilitator, to learn about her research on bird strikes at UGA Costa Rica. Martha, 29, grew up nearby in Santa Elena and became interested in bird strike research through her past work with Rose Marie Menacho.

160622_REE_UGACR_Birds_0139
Martha Garro Cruz holds an orange-chinned parakeet on the University of Georgia campus in Costa Rica. Photo by Rachel Eubanks.

Menacho, an environmental educator and researcher based in Monteverde, has worked extensively to research bird strikes in the Monteverde Cloud Forest Reserve and recently presented her work on bird strikes in Costa Rica at the Monteverde Arenal Bioregion conference.

While most information on bird strikes currently reflects findings from the United States and Canada, this type of research is especially important to Costa Rica because of the country’s high level of biodiversity and the importance of bird watching to Costa Rica’s tourism industry.

In the United States alone, an estimated 100 million to 1 billion birds die each year as a result of bird strikes.

Thankfully, everybody can do something to combat this problem. Here at UGA Costa Rica, Cruz has incorporated a citizen science component into her research on bird strikes, relying on students and guests to observe and record bird strikes when they occur on campus in addition to her own observations and data collection. Cruz conducts her research three consecutive days per week using a numbered window system to track where strikes occur most frequently and which bird species are most susceptible to strikes.

IMG-20160712-WA0002
For five weeks Cruz worked with Jocelin Alarcon, pictured above, and Christy Li, two interns from Lehigh University, on her bird strike research. She expects the project to take a total of two years. Photo provided by Martha Garro Cruz.

While the majority of bird strikes occur at low-rise buildings, such as the journalism building I frequented on the campus of the University of Georgia, 44 percent of bird strikes occur at residences. So whether at your home or in the workplace, you have the ability to combat the prevalence of bird strikes.

Here are a few ways to prevent bird strikes in your own community:

  • Draw designs on the outside of windows using UV pens or window markers
  • Tie strings to the tops of windows, leaving 10 centimeters between each, or use tape to create a similar pattern of vertical lines
  • Close your blinds when you exit a room or leave the house and turn off lights at night
  • Encourage the companies you work for to invest in high-tech, beautifully-designed methods to avoid bird strikes, like those mentioned in the article below


Learn More:
 View this video by National Geographic on how we can prevent millions of bird deaths through innovative window designs

Blog post written by photojournalism intern Rachel Eubanks