Una alternativa importante para restablecer la salud de los ecosistemas / An important alternative to restore the health of ecosystems

En enero del año 2008 la Universidad de Georgia, Campus Costa Rica (UGACR) comenzó con el Programa de Compensación de Carbono. Este surgió como una iniciativa para compensar las emisiones de CO2 que se liberan a la atmósfera generadas por el transporte de estudiantes de programas académicos de la Universidad de Georgia. Por cada participante del programa se deben plantar cuatro árboles para secuestrar el carbono liberado en dichos viajes.

In January 2008, the University of Georgia, Costa Rica Campus (UGACR) began the Carbon Offset Program. This emerged as an initiative to compensate the CO2 emissions released into the atmosphere generated by the transportation of students from academic programs at the University of Georgia. For each participant of the program, four trees must be planted to sequester the carbon released in those trips. 

 

6
Plántulas de Manilkara chicle
Seedlings of Manilkara chicle 

UGACR es una de las instituciones fundadoras del Corredor Biológico Pájaro Campana (CBPC), éste se ubica en la vertiente del Pacífico de Costa Rica, abarcando desde la Cordillera de Tilarán hasta la costa. Los corredores biológicos proveen conectividad entre ecosistemas, buscando proteger la biodiversidad. Una característica de los corredores biológicos es que no excluyen la presencia de poblaciones humanas. Las prácticas agrícolas intensivas y el desarrollo de infraestructura no planificado son ejemplos de degradación del medio ambiente, por lo que la reforestación es una alternativa importante para restablecer la salud de los ecosistemas dentro de un corredor.

UGACR is one of the founding institutions of the Bellbird Biological Corridor (BBC), which is located on the Pacific slope of Costa Rica, from the Tilarán mountain range to the coast. Biological corridors provide connectivity between ecosystems, seeking to protect biodiversity. A characteristic of biological corridors is that they do not exclude the presence of human populations. Intensive agricultural practices and the development of unplanned infrastructure are examples of environmental degradation, so reforestation is an important alternative to restore the health of ecosystems within a corridor.

 

1
En orden de aparición de izquierda a derecha: Martha Garro, Riley Fortier y Lucas Ramírez buscando frutos en los árboles durante la recolecta de semillas mensual.
In order of appearance from left to right: Martha Garro, Riley Fortier, and Lucas Ramírez looking for fruits in trees during the monthly seed collection.

El programa de reforestación de UGACR ha donado más de 40 000 árboles de 130 especies que han sido plantados en más de 150 fincas, distribuidas en el CBPC. El objetivo del proyecto es reforestar con árboles nativos, además se busca restaurar los bosques perdidos de la vertiente del Pacífico, aumentar la conectividad entre parches de bosque, enriquecer y mejorar los márgenes de ríos y quebradas, establecer cercas vivas, disminuir erosión, conservar la biodiversidad, y desde luego, secuestrar las emisiones de carbono que se liberan a la atmósfera por la operación del programa UGACR.

The UGACR reforestation program has donated more than 40,000 trees of 130 species that have been planted in more than 150 farms, distributed throughout the BBC. The objective of the project is to reforest with native trees, seeking to restore the lost forests of the Pacific slope, increase connectivity between forest patches, enrich and improve the margins of rivers and streams, establish living fences, reduce erosion, conserve biodiversity, and of course, to sequester the carbon emissions that are released into the atmosphere by the operation of the UGACR program.

 

2
En orden de aparición de izquierda a derecha: Lonchocarpus minimiflorus, Hymenaea courbaril, Hura crepitans, Cedrela salvadorensis, Swietenia humilis, Manilkara chicle.
In order of appearance from left to right: Lonchocarpus minimiflorus, Hymenaea courbaril, Hura crepitans, Cedrela salvadorensis, Swietenia humilis, Manilkara chicle.

La persona que ha estado encargada de la parte operativa desde el principio del proyecto de reforestación es Lucas Ramírez. Él se incorporó al personal de UGACR en el año 2003. Antes formaba parte del Departamento de Reserva Forestal y Protección, y ahora pasó a ser parte del Departamento de Investigación, Enseñanza y Pasantías; sus principales funciones conllevan el mantenimiento y atención del jardín botánico y medicinal, el programa de reforestación y la atención de grupos académicos.

The person who has been in charge of the operative tasks since the beginning of the reforestation project is Lucas Ramirez. He joined the UGACR staff in 2003 as part of the Forest Reserve and Protection Department, and has now become part of the Research, Teaching, and Internship Department; Its main functions involve the maintenance and care of the botanical and medicinal garden, the reforestation program, and serving academic groups.

 

10

7
Lucas durante el tratamiento de semillas: separando la semilla del fruto Swietenia humilis
Lucas during the seed treatment: separating the seed from the fruit of Swietenia humilis

 

 

Su trabajo con relación al proyecto de reforestación consiste primero en la ubicación de diversas especies de plantas, tanto de especies que habitan en zonas altas como bajas, adaptables a lugares rocosos, quebrados o a lo largo de los ríos. Posteriormente se recolectan los frutos, para así llevar a cabo el tratamiento de las semillas, para esto se separan del fruto, se lavan y se secan. El siguiente paso consiste en germinar las mismas, dentro de camas de germinación (las cuales contienen tierra, arena, hojas, ramas), luego las plántulas son trasplantadas a una bolsa de almácigo para poder ser donadas y transportadas a las personas, fincas y organizaciones amigas del programa de reforestación. Lucas es quien ha mantenido un contacto con las y los interesados en adquirir árboles, además de proporcionar información acerca de las diferentes especies y cuidados.

His work with the reforestation project consists of locating a variety of plant species, including those that inhabit high and low elevation areas, are adapted to rocky places, or occur along rivers. The fruits are collected and treated by separating the seeds from fruits and then washing and drying them. The next step is to germinate the seeds in germination beds (which contain soil, sand, leaves, branches), and then transplant them to soil bags which are donated and transported to people, farms, and other organizations. Lucas maintains contact with people interested in acquiring trees, in addition to providing them with information about the care of different species.

 

 

Actualmente se producen de cuatro a cinco mil árboles en el vivero forestal para ser donados. Algunas de las especies que tienen mayor demanda son: Montanoa guatemalensis (Asteraceae) “Tubú”, Croton niveus (Euphorbiaceae) “Corpachí” y Diphysa americana (Fabaceae) “Guachipelín”. Las diferentes especies de la zona tienen diversos usos y beneficios, como por ejemplo ser maderables, atraer biodiversidad, tener frutos comestibles, para cercas vivas y rompe vientos, para embellecimiento escénico, contener la erosión, restaurar márgenes de ríos y quebradas, entre otros. Por temporada se manejan entre 15 y 19 diferentes especies de árboles en el vivero forestal de UGACR, algunos ejemplos son:

Currently four to five thousand trees are being produced in the forest nursery to be donated. Some of the species that have greater demand are: Montanoa guatemalensis (Asteraceae) “Tubú”, Croton niveus (Euphorbiaceae) “Corpachí” and Diphysa americana (Fabaceae) “Guachipelín”. The species found in the area have a variety of uses and benefits: some are used for timber, to attract biodiversity, for edible fruits, to serve as living fences and wind breaks, for scenic aesthetic, to contain erosion, and to restore margins of rivers and streams, among others. During each season, between 15 and 19 different tree species are managed in the UGACR forest nursery, some examples are:

 

  • Cedrela salvadorensis (Meliaceae) “Cedro”
cedrela salvadorensis1
Arbolito de Cedrela salvadorensis en bolsa de almácigo.//
Sapling of Cedrela salvadorensis in a soil bag.

 

cedrela salvadorensis2
Arbolito de Cedrela salvadorensis en bolsa de almácigo. // Sapling of Cedrela salvadorensis in a soil bag.

Usos y beneficios: Especie en peligro de extinción, maderable, su hábitat es de bosque denso, sin embargo, pueden encontrarse como árboles solos en potreros o cercas, crece en tierras bajas.

Uses and benefits: Endangered species, timber, their habitat is dense forest, however, they can be found as single trees in pastures or fences, grows in low elevation sites.

 

  • Hymenaea courbaril (Fabaceae) “Guapinol”

 

hymenaea courbaril
Arbolito de Hymenaea courbaril  en bolsa de almácigo.
 Sapling of Hymenaea courbaril  in a soil bag.

 

hymenaea courbaril2
Arbolito de Hymenaea courbaril  en bolsa de almácigo. //
 Sapling of Hymenaea courbaril  in a soil bag.

 

Atrae biodiversidad, crece en tierras bajas y medias, su madera se utiliza para artesanía y construcción, la parte carnosa del fruto es comestible y su resina se utiliza como barniz. Las semillas se utilizan en la elaboración de bisutería en general. Se preparan bebidas con el almidón del fruto.

Uses and benefits: Attracts biodiversity, grows in low and middle elevation sites, its wood is used in handicrafts and construction, the fleshy part of the fruit is edible and its resin is used as a varnish. The seeds are used in the manufacture of jewelry in general. Drinks are prepared with the starch of the fruit.

 

  • Hura crepitans  (Euphorbiaceae) “Jabillo”

 

hura crepitans bb
Arbolito de Hura crepitans en bolsa de almácigo.
Sapling of Hura crepitans in a soil bag.
hura crepitans bb2
Arbolito de Hura crepitans en bolsa de almácigo.
Sapling of Hura crepitans in a soil bag.

Usos y beneficios: Para restaurar márgenes de ríos y quebradas, atraer biodiversidad, contener la erosión, su madera es utilizada en construcciones y ebanistería y los frutos para elaborar artesanías. La savia es tóxica. Crece en tierras bajas y medias de ambas vertientes.

Uses and benefits: To restore river banks and streams, attracts biodiversity, contains the erosion, its wood is used in cabinetmaking and construction, and the fruits to produce handicrafts. The sap is toxic. It grows in low and middle elevation sites.

Para más información información llamar al / For more information at (506) 2645-7363 extensión/extension: 109

O al correo electrónico/ or to the email : ugacrheadnaturalist@gmail.com

 

Escrito por Mariela Vásquez González pasante de fotoperiodismo/ photojournalism intern

Revisión científica por José Joaquín Montero Ramírez

 

Retos de conservación: Humanos, comunidad y medio ambiente/ Conservation challenges: Humans, community and environment

 

9

Jordan Rogan explorando, de camino a una de su cámara trampa
Jordan Rogan exploring, in the way to one of her camera traps

 

Jordan Rogan es una estudiante de doctorado del departamento de Ciencias de la Vida Silvestre y Pesquería de la Universidad A&M de Texas y forma parte del Laboratorio de Monitoreo y Evaluación de la Biodiversidad. Ella ha desarrollado su proyecto de investigación con el apoyo técnico de UGA Costa Rica desde junio del presente año, titulándose: “Resiliencia, distribución y conservación de mamíferos medianos y grandes en Monteverde, Costa Rica”.

Su investigación busca identificar los requisitos que necesitan los mamíferos medianos y grandes de un hábitat para conservar la biodiversidad frente a los cambios en la cobertura de la tierra y la fragmentación del hábitat. La cobertura de la tierra en este caso se refiere a la cantidad de vegetación nativa que cubre un territorio. La fragmentación sucede cuando un área boscosa continua es transformada en un área con parches de bosque aislados. Ambos procesos pueden suceder por cambios antropogénicos, estos son los usos que le da a la tierra el ser humano.

Jordan Rogan is a Ph.D. student at Texas A&M University in the department of Wildlife & Fisheries Sciences and she is also a member of the Biodiversity Assessment & Monitoring lab. She has been developing her research project with the technical support of UGA Costa Rica since June of this year. Her project is titled “Resilience, distribution and conservation of mid-large mammals in Monteverde, Costa Rica”.

Her research aims to identify the requirements of medium and large mammals in a habitat in order to conserve biodiversity in the face of changes in land cover and habitat fragmentation. Land cover, in this case, refers to the amount of native vegetation that covers an area. Fragmentation is when a continuous forest area is transformed into isolated forest patches. Both processes can occur due to anthropogenic, or human-caused, changes to the environment.

 

5

Las principales herramientas que Jordan utiliza en las giras de campo son: las cámaras trampa, el GPS (Sistema de Posicionamiento Global), tarjetas de memoria, baterías recargables, cinta topográfica biodegradable para marcar donde se instalaron las cámaras, clinómetro y densiómetro, machete, cinta métrica, y un cuaderno.
The materials that Jordan uses in the field include: camera traps, GPS (Global Positioning System) device, memory cards, rechargeable batteries, biodegradable flagging tape, a clinometer and a densiometer, a machete, measuring tape, and a field notebook.

 

A nivel mundial la cobertura de la tierra de los bosques tropicales se ha degradado en más de un 50%, la pérdida de vegetación nativa está relacionada con la incapacidad de un ecosistema para mantener su funcionalidad, amenazando la biodiversidad.    

Según esta investigación gran parte de los estudios relacionados al tema, se han centrado exclusivamente en aves y pequeños mamíferos, sin embargo, este estudio se centra en mamíferos medianos y grandes. Estos mamíferos son los de un peso mayor a 1 kilogramo como, por ejemplo: Puma (Puma concolor), Pizote (Nasua narica), Ocelote (Leopardus pardalis), Chancho de Monte (Pecari tajacu), entre otros.

La investigación aborda la pérdida de hábitat y como esta influye en la población de los mamíferos de mediano y gran tamaño, según Jordan estos mamíferos “desempeñan un papel importante en la preservación de los procesos e integridad de los ecosistemas y representan un grupo particularmente vulnerable al cambio de cobertura de la tierra”.

Land cover change has resulted in the degradation of over 50% of tropical forests globally, resulting in the loss of native vegetation. This loss is associated with the inability of an ecosystem to maintain its functionality, thus threatening biodiversity.

According to this research, most of the studies related to the subject have focused exclusively on birds and small mammals, however, this study focuses on medium and large mammals. These mammals weigh at least 1 kilogram and include the Puma (Puma concolor), White-nosed Coatimundi (Nasua narica), Ocelot (Leopardus pardalis), Collared Peccary (Pecari tajacu), among others.

The research investigates the loss of habitat and how this influences the populations of medium and large mammals. According to Jordan they “play an important role in preserving ecosystem processes and integrity and represent a group particularly vulnerable to land cover change”.

 

6

La altura para instalar una cámara trampa es entre 30 a 50 cm, se mide desde la base del árbol. Esta medida puede variar dependiendo si el árbol se encuentra en una pendiente
The height for install the camera traps is between 30-50 cm from the base of the tree, it can vary depending on whether the tree is on a slope

 

Los mamíferos de mayor tamaño son vulnerables a la fragmentación y a los cambios de la cobertura de la tierra, requieren de más recursos, ocupando territorios de mayor cobertura boscosa continua, además de ser blanco de los cazadores. Cada especie requiere de diferentes recursos para sobrevivir, por ejemplo, los que son depredadores necesitan de mayor cantidad de presas para alimentarse, y como resultado mayor cantidad de bosque continuo. Lo anterior se refiere a los rasgos funcionales, estos representan las diferentes características biológicas que definen a cada especie, con las que interactúan con el medio ambiente.

Jordan estudia múltiples especies en vez de centrarse en solo una; esto, en combinación con los rasgos funcionales, permiten que la investigación tenga una comprensión más profunda del tema. El objetivo del estudio es comprender las consecuencias sobre la biodiversidad por la pérdida de vegetación nativa en un hábitat y determinar así las áreas prioritarias para la conservación de los mamíferos bajo estudio.

Large mammals are more vulnerable to fragmentation and land cover changes because they require more resources, inhabit larger territories of continuous forest cover, and are targeted by hunters. Each mammal species requires different resources in order to survive. For example, those that are predators require larger prey populations, and as a result, greater continuous forest. Altogether the sum of biological characteristics that define each species is referred to as the functional traits, and these influences how each species interacts with the environment.  

Jordan studies multiple species instead of focusing on just one; this, along with the consideration of functional traits, allows her research to have a more comprehensive scope. The objective of this study is to understand the consequences of the loss of native vegetation in a habitat on biodiversity and to determine the areas of conservation priority for the mammal species under study.

 

4

Instalando baterías y tarjetas de memoria en la cámara trampa, este proceso le permite a la investigadora recolectar información cada 3 semanas
Installing batteries and a memory card in a camera trap. This process enables her to collect data every 3 weeks

 

El programa Ciencias Aplicadas de la Biodiversidad del doctorado del que Jordan forma parte, prepara estudiantes para que puedan abordar retos de conservación involucrando tanto a las personas de las comunidades como también al medio ambiente, incluyendo ambos elementos dentro de un mismo sistema ecológico, como dice Jordan “es ahí donde la conservación sucede”. Es por esto que, además de recolectar datos de las cámaras ella entrevista a las personas dueñas de propiedades complementando así su estudio con saberes de personas locales.

La localidad en que Jordan realiza su proyecto es la Zona Protectora Monteverde Arenal y el Corredor Biológico Pájaro Campana en Costa Rica. Su investigación involucra cámaras trampa que coloca en sitios de estudio determinados a través de esta zona, recolectando datos acerca de la “presencia o ausencia de los mamíferos”. Instala las cámaras durante 45 días en cada sitio que luego reubica. 

Su intención es contribuir específicamente con la conservación del Corredor Biológico Pájaro Campana, su interés es presentar los hallazgos de la investigación a la comunidad, a ONG interesadas en conservación y que a través de un estudio integral se desarrolle un manejo ambiental adecuado.

The researcher is part of the Applied Biodiversity Sciences (ABS) Ph.D. program, which prepares students to tackle complex conservation challenges, involving both human communities and the environment, including both elements within the same ecological system. According to Jordan “there is where conservation takes place”. For this reason, Jordan interviews the owners of properties in her study area, in addition to collecting data from camera traps, complementing her study with the knowledge of local people.

The study areas of Jordan´s project are the Monteverde Arenal Protected Zone and the Bellbird Biological Corridor in Costa Rica. Her research utilizes camera traps placed in predetermined study sites throughout these areas, gathering “presence/absence data on mammals”. The camera traps run for 45 days at each study site before they are rotated to new sites.

Jordan´s intention is to contribute with conservation, specifically within the BellBird Biological Corridor. She plans to present her research findings to the community and to NGOs interested in conservation in order to promote integrative conservation management that incorporates the needs of both humans and the environment.

 

 

IMG_1369

Algunos resultados preliminares obtenidos a través de las cámaras de Jordan:
Ocelotes (Leopardus pardalis)
Some of the preliminary results of Jordan´s study, obtained from camera traps: 
Ocelots (Leopardus pardalis)

pecary

Algunos resultados preliminares obtenidos a través de las cámaras de Jordan:
Chancos de monte  (Pecari tajacu)
Some of the preliminary results of Jordan´s study, obtained from camera traps: 
Collared peccaries (Pecari tajacu)

 

Para más información contáctese al correo /For more information contact the email:  roganjordan23@tamu.edu

 

Mariela Vásquez G. pasante de fotoperiodismo/ photojournalism intern

Iniciativas de descontaminación en UGA: El Biodigestor / UGA decontamination initiatives: The Biodigestor

1

UGA Costa Rica en el año 2008 quiso desarrollar el campus de una manera sostenible. Para esto evaluó y creó un plan de manejo para la finca, en el que se decidió incorporar en el año 2011 el primer biodigestor o sistema de descontaminación productiva de aguas residuales dentro del campus, un prototipo en el área de Monteverde.

La biodigestión consiste en la fermentación producida por bacterias anaeróbicas, componentes de las excretas (humanas o animales), sobre materia orgánica, éstas se aprovechan ubicándolas en un contenedor hermético, donde se generan altas temperaturas que destruyen y reducen las bacterias que podrían causar enfermedades. Las altas temperaturas llegan a “destruir hasta el 95% de los huevos de parásitos y casi todas las bacterias y protozoarios causantes de disentería” (Botero y Preston, 1987, P. 4). Es por esto que los residuos luego de ser procesados pueden ser aprovechados para la finca como fertilizante y abono.

In 2008, UGA Costa Rica wanted to develop the campus in a sustainable way. A plan to manage the farm was created, and in 2011, UGA decided to incorporate the first biodigestor/decontamination system of wastewater within the campus.  This biodigestor was a prototype in the Monteverde area.

 The biodigestion process occurs via the consumption of organic material by anaerobic bacteria. These organic components consist of human or animal excrement and other organic matter. The process occurs when these components are placed in an airtight container, where the anaerobic decomposition of these organic materials generates high temperatures that destroys or greatly reduces the concentration of bacteria that could cause illness. High temperatures “destroy up to 95% of parasite eggs and almost all bacteria and protozoa which cause dysentery” (Botero & Preston, 1987, p. 4). This is why the waste can be used on the farm as fertilizer after being processed.

 

2

El encierro de los animales se limpia para dirigir las excretas a un filtro
The animal enclosures are cleaned up, excretement are directed to a filter

 

3

El filtro por el cual pasan las excretas para ser dirigidas al reactor evita que pase material grueso o duro que puede ser difícil de descomponer dentro del biodigestor esto también evita daños a la bolsa.
The filter through which the excretion passes separates out the thick or hard material that would otherwise damage the reactor, or be difficult to decompose.

 

6.jpg

El reactor es una bolsa hermética donde se produce la digestión anaeróbica, ahí se descompone el material orgánico que viene del establo para luego pasar al tratamiento secundario en las lagunas. Es en este proceso donde también se produce el biogás.   
The reactor is an airtight bag where anaerobic digestion takes place, organic material that comes from the stable decomposes there to pass to the secondary treatment in the lagoons.  In this process that biogas is also produced.

 

7

Lagunas con plantas acuáticas para el tratamiento secundario de los efluentes que provienen del biodigestor.
Lagoons with aquatic plants for the secondary treatment of the effluent that comes from the biodigester.

 

Ya para el año 2013, por la eficiencia del primer prototipo instalado en la finca, se desarrolló otro biodigestor en el campus principal. Como resultado de ambos biodigestores se ha logrado procesar una mayor cantidad de materia orgánica generando más abono sólido y líquido, así como más biogás. Además, se implementaron las lagunas, donde el agua que sale del biodigestor de la finca lleva un tratamiento secundario con plantas acuáticas, las cuales absorben la materia orgánica restante, terminando de descontaminar las aguas residuales. Estas plantas también son utilizadas como alimento para cerdos y vacas.

La digestión anaerobia, como resultado produce una mezcla de gases que sirven como combustible (biogás), que puede ser aprovechado en diversos usos como fuente de energía renovable produciendo calor y electricidad.

La tecnología del biodigestor en el campus es considerada una herramienta multipropósito muy provechosa, ya que genera combustible, abono líquido y sólido. Además, el biodigestor juega un papel importante en la conservación, reduciendo la contaminación ambiental, según Carreras N. (2017, 3p.) el principal componente del biogás es el Metano (50-70%), este gas, contribuye al efecto invernadero y con esta tecnología en vez de ser liberado a la atmósfera es aprovechado como fuente de energía.

By the year 2013, due to the efficiency of the first prototype installed on the farm, another biodigester was developed on the main campus. As a result, both of the biodigesters have been able to process a greater amount of organic matter generating more solid and liquid fertilizer, as well as biogas. In addition, the lagoons at the farm were implemented, where the water leaving the biodigester has a secondary treatment with aquatic plants, which absorb the remaining organic matter, finishing the decontamination process of the waste water. These plants are also used as food for pigs and cows.

Anaerobic digestion as a result produces a mixture of gases that serve as fuel (biogas), which can be exploited in various ways as a source of renewable energy by producing heat and electricity. 

The biodigester technology on campus is considered a useful multipurpose tool, since it generates fuel, liquid and solid fertilizers, as also an educative oportunity. According to Carreras N. (2017, 3p.) the main component of biogas is methane (50-70%). This gas, which is known as a major contributor to the greenhouse effect, is harnessed as an energy source, rather than released into the atmosphere.

 

28

Cámara de tratamientos de aguas residuales del campus principal
Main campus sewage treatment chamber

 

32

Tubería que transporta el gas hacia el reservorio de biogás y tubería que comunica ambas cámaras para el proceso de tratamiento de aguas residuales
Large pipe on left: pipe that transports the biogas to the reservoir seem below.  Horizontal pipe consolidates both chambers for the wastewater treatment process

 

26

Reservorio de almacenamiento de biogás.
Biogas storage reservoir

 

34

El biogás siendo utilizado para el gas de la cocina
Biogas being used for gas in the kitchen

 

A través de los años en los que UGA Costa Rica ha experimentado con esta tecnología, se ha logrado compartir el conocimiento e instalar cinco biodigestores en diferentes fincas de la comunidad de San Luis y Monteverde.  Esto se ha logrado a través de programas académicos con estudiantes, donde se ha fortalecido el aprendizaje a través de la experiencia.

Through the years in which UGA Costa Rica has experimented with this technology, it has been possible to share knowledge and install five biodigesters on different farms in the community of San Luis and Monteverde. This has been achieved through academic programs with students, where their experience has been strengthened through service learning.

Mariela Vásquez G. pasante de fotoperiodismo/ photojournalism intern


Bibliografía

Botero R., Preston T.R. (1987). Biodigestores de bajo costo para la producción de combustible y fertilizante a partir de excretas. “Manual para su instalación, operación y utilización”. Recuperado de http://www.produccion-animal.com.ar/Biodigestores/04-biodigestores.pdf

Carreras N. (2017). CURSO DE FORMACIÓN TEÓRICO-PRÁCTICO DE ENSAYOS EN BACH (BMP) Y CONTINUOS DE DIGESTIÓN ANAEROBIA BASADOS EN LA NORMA VDI 4630. España: CIEMAT.

 

Offsetting the Upsetting: Students Plant Trees to Lessen Carbon Footprint

En route to UGA Costa Rica, students, professors, researchers, and guests alike all have to take a (minimum of one) flight to arrive in country. Taxis, buses and shuttles then make the trip to campus – all modes of transportation which emit carbon dioxide, CO2. This greenhouse gas (GHG), along with methane, nitrous oxide, water vapor, and ozone, absorb and emit energy in the thermal infrared range. AKA, the gases trap incoming sunlight and emit it as heat, similar to the effects of a greenhouse. That’s all fine and dandy because naturally, they keep us earthlings warm.

But things have literally been heating up. The concentration of GHGs has been increasing at alarming rates due to anthropological activity dating back to 1760, the start of the Industrial Revolution. The rising GHGs are affecting the temperature of Earth’s atmosphere and oceans, and harming established ecosystems.

You can argue that it’s unrealistic to stop emitting GHGs altogether, but that doesn’t mean something isn’t being done to offset them!

What is offset, you ask?

It’s the process by which any individual, company, country, etc. pays to neutralize their own emissions of greenhouse gases either via conserving existing forests, reforesting, or investing into green energy.

In order to offset the carbon emitted while Costa Rica-bound, the campus has chosen the reforestation route.

With the help of Lucas Ramirez, campus harvester of seeds and guardian of the woods, guests and students are able to participate in UGA Costa Rica’s carbon offset program. Lucas gathers seeds from the surrounding forest, germinates them, and leads workshops in which participants pack soil bags and plant seedlings.

The project has not only been nudging UGA Costa Rica closer to carbon neutrality, but has also been helping to reforest the Bellbird Biological Corridor, an area in Costa Rica designated for conservation and reforestation.

Here’s how it works. On average, one flight and ground travel equates to approximately 0.66 tons of CO2. The number was rounded up to one ton to allow for a margin of error. It was then calculated that four trees (accounting that one might not make it) will sequester one ton of carbon in just about eight-and-one-third years. Sequestration means the trees take CO2 out of the atmosphere and change it into an organic form that would otherwise contribute to warming the world.

BONUS: the trees will likely live longer than eight-and-one-third years, which means more carbon sequestration! Yay!

The planted seedlings camp out in the UGA Costa Rica nursery for about a year before being adopted by a farmer. The saplings are given to local farmers who have expressed interest in caring for and maintaining the trees for a three-year period and participating in the project. The young trees are only planted during the rainy season!

Take a look at this UGA Maymester crew working hard to prepare next year’s saplings!

Blog post contribution by Alex Fylypovych, UGA Costa Rica Photojournalism Intern

#EveryDayShouldBeEarthDay

After the 1969 oil spill in Santa Barbara, California, then-Senator Gaylord Nelson of Wisconsin decided that environmental awareness needed to become high-priority. The following year, Nelson launched the first Earth Day on April 20, 1970. Over 20 million people rallied across the U.S., germinating conversations about conservation and environmental awareness. Continuing to grow over the years, Earth Day went global in 1990, with 200 million people in 141 countries participating, according to Earth Day Network and LiveScience.com.

As an institution whose mission it is to increase the understanding of the fusion between humans and the environment, University of Georgia Costa Rica strives to use instruction, research, and outreach to achieve socio-cultural, ecological, and economic sustainability. What better day than Earth Day to highlight the number of ways in which this campus continues to blossom in its daily environmental efforts!

 “The mission of UGA Costa Rica is to advance our understanding – through instruction, research and outreach – of the interconnected nature between human and environmental systems, particularly the concepts of socio-cultural, ecological, and economic sustainability.”

UGA Costa Rica’s campus is nestled in the cloud forest of San Luis de Monteverde, Costa Rica. Prior to 1975, the surrounding area was a coffee plantation and dairy farm. As a result, the lush primary forest that once blanketed these mountains was heavily deforested, significantly affecting wildlife and biodiversity.

But now, through reforestation and other conservation practices, the UGA Costa Rica campus is bouncing back, 62 hectares (155 acres) strong! In 1995, the land was part of the Ecolodge San Luis and Biological Station, and was purchased in 2001 by the University of Georgia Foundation.Rainbow

First fun fact: Only 10 of 62 hectares were used for construction – the rest is a private reserve for the wildlife, with trails meandering through the cloud forest’s massive strangler figs and umbrella-like cecropia trees. According to the 2013 UGA Costa Rica Sustainability Report, about 60% of campus remains forested, 30% is used for sustainable agriculture, and 10% is developed.

What else, you ask? I’m just getting started.

The campus has an organic farm, located close to campus – only a five-minute hike along a leaf-littered, winding trail. A yearly average of 15% of the food comes directly from the terraced beds and hard work of agriculture interns and farm manager. Lettuce, carrots, limones, radishes, eggs, tomatoes – I’m salivating just thinking about how fresh all of it is!

After having a hearty Costa Rican dinner and a day’s worth of adventures zip lining or exploring the cloud forest on foot, it’s time for hot showers thanks to the solar heating systems perched on top of bungalow roofs! And while we’re talking about bungalows, let’s appreciate the means by which they were constructed. Most of the material used to build campus lodging is a beautiful dark, orange-tinted wood, which is; drumroll please… sustainably harvested teak wood.

It’s the little things that count, too; UGA Costa Rica uses and sells bars of soap and other hygiene products, locally made. The best part – they’re organic and don’t have harmful antibiotic properties that would harm the hard-working microbes in the biodigesters.

Ah, the biodigesters.

Biodigester

UGA Costa Rica has two biodigesters. It’s essentially a fancy word for waste cleaning machine. Waste, anything from human or livestock fecal matter, is disposed of into one end of a balloon-like cylindrical tube. Microbes living inside the digester break down the matter, releasing water and methane as byproducts. The methane rises and collects in what appears to be a floating tube. The gas is syphoned via a long hose to the kitchen and used to fuel certain kitchen stoves! Recycling resources – yeah!

Another major benefit of the biodigester is that during the microbial cleaning process, things that would cause serious harm to the environment, like fertilizers, methane, and waste in general, are filtered out, so the water that is being emptied back into the ecosystem is much more pure –great news for water quality in the area!

All extra food scraps are either gratefully garbled up by our humanely raised campus pigs, or taken to our compost pile to be broken down and used as soil for the farm.

UGA Costa Rica also has plans to become carbon neutral, meaning it will offset the carbon it has emitted, mainly via its reforestation program, a project that sprouted in 2008. Campus biodigesters, composting, and recycling habits also play a roll in offsetting carbon.

And don’t forget about social sustainability; the majority of UGA Costa Rica employees are local Ticos (Costa Ricans), which not only provides them economic benefits, but also cuts the need to drive to more distant jobs and generate more emissions.

If you’re interested in learning more about the campus’s daily quest toward sustainability, be sure to check out the detailed 2013 UGACR Sustainability Report.


Happy Earth day from the UGA Costa Rica staff and interns! Use the hash tag #everydayshouldbeEarthDay today to show and share your support for our home!

Post contributed by Alex Fylypovych, UGA Costa Rica Photojournalism Intern

Pura Agua, Pura Vida!

For the past three years, the Arenal-Tempisque Irrigation District governed by Costa Rica’s National Service of Underground Water, Irrigation, and Drainage (SENARA), has experienced drought conditions complicating water management and agricultural production.

UGA graduate students have been key players in developing a model and providing data to aid the drought-stricken district through their Costa Rica Water Resources project. Through collaborative research with NASA, SENARA “was provided with continuous data to more efficiently manage water resources, benefiting local stakeholders including irrigators, and more than 1,000 individual users of the stream,” the project abstract explains.

Steve Padgett-Vasquez is a current PhD candidate at UGA and an advisor to the Costa Rica Water Resources project team. During his first year of graduate school, Padgett-Vasquez helped instate a DEVELOP branch at UGA, a program that partners young researchers, such as himself, with NASA, and uses leading data from NASA Earth observations to address environmental issues.

“I have been working with DEVELOP since 2010, which has given me valuable experience in creating project ideas,” he said.

The Costa Rican Water Resources project came about after Padgett-Vasquez took a Water Management course taught by Dr. Quint Newcomer, Director of UGA Costa Rica. The highlight of the course included staying at UGA Costa Rica’s campus and traveling to Cañas in the Guanacaste region of Costa Rica.

It was there that the class met Javier Artiñano Guzmán, an agronomist for SENARA, who spoke about the drought throughout the Arenal-Tempisque Irrigation District. Padgett-Vaquez said listening to Artiñano Guzmán discuss his interest in updating the current GIS infrastructure, and as a result improving water management data, “was all it took to decide it would be a great project.” Padgett-Vasquez already had approval from the US Costa Rican Embassy and the DEVELOP National Program Office to move forward with project planning.

According to Padgett-Vasquez, the long-term impact of this partnership is for SENARA to benefit from supplemental NASA Earth observation data, collected by NASA satellites, and systematically overcome environmental stresses such as drought. Similarly, “participants who are part of the team, Javier [Artiñano Guzmán], and SENARA, will not only get a technical report, but a methodology and training on how to use the data,” Padgett-Vasquez added.

This short clip is an informative overview of the outstanding research being done!

Blog post contribution by Alex Fylypovych, UGA Costa Rica Photojournalism Intern

Why let waste go to waste?

With a neon bucket swinging playfully in hand and a royal blue cooler slung over her shoulder, Maureen Kinyua looks like she’s headed for the beach. But her long pants, scuffed hiking boots, and red daypack suggest otherwise.

Born and raised in Kenya, Maureen received a scholarship to study in the U.S. and is now in her fourth year of pursuing a PhD in Environmental Engineering from University of South Florida. Maureen’s dissertation pertains to improving the health of people in developing countries, women in particular, through sustainable technology that is uncomplicated to install, use, and maintain.

“Environmental engineers and public health sometimes concentrate on water water water water [in developing countries]…but they forget livestock waste is such a big polluter of water,” Maureen said.

Enter the biodigester.

BiodigesterUGA2
Maureen stands on a plank in front of UGACR’s farm biodigester. Microbe treated water gurgles beneath her as it flows from the biodigester.

It’s essentially a fancy word for waste cleaning machine. Waste, anything from human or livestock fecal matter to leftover scraps from meals, is disposed of into one end of a balloon-like cylindrical tube. With time, microbes trapped inside the digester break down the matter, mainly into water, carbon dioxide, and methane. These components are cycled into reuse, increasing environmental, social, and economic standards in a given location.

“You can provide people with a well, but then it gets polluted by livestock waste, so you’ve not really solved the issue, and you’re still not helping their economics or the environment,” Maureen said.

Her research, therefore, highlights the environmental, social, and economic benefits of the biodigester. Having received another grant to continue her research, Maureen has returned to UGA Costa Rica and the surrounding community to sample livestock waste and test it’s biogas potential. Out of curiosity, I tagged along.

I knew we made it to our first farm when Maureen slapped on purple latex gloves and glided on over to the pigpen. How elegantly she reached down, a yogi diving toward her toes. But instead of grabbing her little piggies, she snatched up a lump of poo belonging to one of the five oinking pigs curiously looking on. She zip-locked and stowed the sample in her bucket. Leaving the scene of sampling, we ducked below a thin blue pipe running from the biodigester in the garden, to the house, disappearing through the kitchen window. Maureen proceeded to educate me about the advantages of re-purposing waste.

Intrigued by Maureen’s sampling, the pigs investigate their visitors.
Intrigued by Maureen’s sampling, the pigs investigate their visitors.

Environmental

  • Firewood is a common resource for cooking in developing countries. The demand for wood contributes to ecosystem destruction. Connecting the extracted methane gas from the biodigester into a kitchen, via a tube, decreases, and in time could offset, deforestation. It’s a new form of energy that requires existing waste to operate –waste that would be dumped otherwise.
  • Lowering the levels of jettisoned solid waste in water has its perks, too. Solids from waste get caught in fish gills, suffocating them, and block essential sunlight from reaching aquatic life. Solids release excess nitrogen and phosphorus, triggering algal blooms, which rely on microbes to aid with decomposition. The overbearing algae-microbe combo eradicates oxygen on which fish and other aquatic life depend.
  • Wastewater flows from the biodigester with fewer toxins and, because the liquid is fortified with natural remaining nitrogen and phosphorus, can be reused as fertilizer.

Social

  • Indoor air pollution mainly affects women who cook with firewood. Microbe-made methane can replace wooden fires as a cooking source, reducing smoke and ash pollution in the home.
  • Microbe-treated wastewater that flows back into waterways is cleaner than solid waste dumping, lowering the risk of water-induced sickness.

Economic

  • Biodogesters release water that has nitrogen and phosphorus components. There’s no need then, to purchase mineral fertilizers that are toxic for the waterways in which they eventually end up. Farmers can simply water their crops with the excess biodogester water and save money doing so. In Costa Rica, neighboring farmers have saved between $20-40 per month after having installed a biodigester.
  • Less air and water pollution means less frequent, costly doctors’ visits for indoor pollution related illnesses.

Having heard about the positive effects of a biodigester, a local Costa Rican farmer eagerly asked Maureen, “when are you returning to build one?”

Blog contribution by Alex Fylypovych, UGA Costa Rica Photojournalism Intern